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Abstract. We introduce the benefits of analyzing VISAR data in the Fourier domain, particularly for
recovering the short time scale signal component. In particular, by combining data from two VISARS
having different long delays, we effectively reproduce the short time resolution ability of a short delay while
retaining the superior sensitivity to absolute velocity of a long delay. Two different delays are generally
desired, not only to untangle integer fringe skips, but to circumvent the fact that a single VISAR cannot
record signal components of frequencies periodic with its reciprocal delay. Combining two different delays
solves this. We treat the VISARs as linear filters and process and combine the signals in the Fourier domain
with a direct equation, without any iteration of time-retarded equations. The technique is demonstrated with
a numerical simulation.
Keywords: VISAR, velocity interferometry
PACS: 07.60.Ly

INTRODUCTION

An important optical diagnostic in shock physics is
a velocity interferometer (“VISAR”) [1, 2, 3, 4],
which measures the velocity history of a target by
producing a fringe phase shift φ(t) vs time recording.
Light reflected from a target is passed through an
interferometer having a delay τ between its arms,
whose output intensity is recorded, which can be
converted into a φ(t) record.

The VISAR has historically operated in a “deriva-
tive” or “short-delay” mode where the detector is
slow relative to the delay. In this case the target
velocity is well approximated to be proportional to
φ(t). However modern detectors such as streak cam-
eras can be as fast or faster than a typical delay of
∼0.1 ns. Alternatively, keeping the detector response
time the same, one desires to increase a VISAR delay
to more sensitively and accurately measure the long
time scale (or absolute) velocity changes. In these
cases the VISAR behaves in a “difference” or “long-
delay” mode. But this has traditionally made analysis

of the short time scale behavior problematic, requir-
ing iteratively solving retarded equations.

Fundamentally, the VISAR is a kind of displace-
ment interferometer, where the fringe phase mea-
sures (in units of wavelength) the change during in-
terval τ in the roundtrip distance between the appa-
ratus and target. Let the target’s position history be
X(t), and the illuminating and reflecting beams be
normal to the target motion. Then φ (units of cycles)
is essentially

φ(t) = 2
X(t)−X(t − τ)

λ
(1)

(See Ref. [4] for a detailed treatment). Lets define an
experimentally measured signal

S(t)≡ λφ(t)/2 = X(t)−X(t − τ) (2)

An example S(t) is shown in Fig. 3 (middle), for both
long-delay and classical short-delay modes. When
τ → 0, we see that the difference becomes derivative-
like and

S(t)≈ τ ∂X
∂ t

= τv (3)
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FIGURE 1. The velocity interferometer is a kind of
displacement interferometer, where one arm sees a target
delayed in time by τ relative to the other arm, and thus
the fringes measure the change in target position over an
interval τ . The short delay result (short dash) is similar
to the perfect derivative dX/dt (bottom graph), which
simplifies analysis. This paper deals with the long delay
case (long dash), which had been problematic to analyze.
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FIGURE 2. The VISAR frequency response has pe-
riodic zeros, spaced every 1/τ . This becomes important
when the detector response is similar to or shorter than the
delay. The lowest frequency behavior of a VISAR, where
it is linear in frequency, approximates a derivative response
(dashed lines). Everywhere besides the zeros, a long delay
VISAR signal can be artificially boosted to behave similar
to a derivative response. The issue of the zeros is solved by
using two different delays.

DIFFERENCE OR LONG-DELAY MODE

With detectors fast compared to τ we are in the
“difference” or “long-delay” mode. Previous authors
(see section 3.2 of Ref. [4]) have explored recovering
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FIGURE 3. Frequency response |r( f )| for a pair of VIS-
ARs having two slightly different delays (solid red &
dashed blue), so that their zeros rarely overlap. A net re-
sponse (thicker black) has fewer zeros.

X(t) from S(t) by iterative use of the retarded differ-
ence equation Eq. 2,

X(t) = S(t)+X(t − τ) (4)

There has been limited success with this. This author
believes a more fruitful approach is in the Fourier
domain rather than with time domain equations, be-
cause this makes more intuitive the deficiencies fun-
damental to the VISAR, and naturally suggests a
strategy to correct for them. Theobald et al. have
successfully used a frequency response approach[5]
with a single VISAR to recover the short timescale
response of shocked window refractive index.

FORBIDDEN SIGNAL COMPONENTS

For example, there are certain signal components
that the VISAR cannot record, namely, those that
are exactly periodic with τ . For example, if X(t) =
sin(2πt/τ) then Eq. 2 shows the measured signal
S(t)= 0 everywhere. Since an arbitrary shape of X(t)
can be Fourier decomposed into a variety of frequen-
cies, this means that components having frequencies
near 1/τ , 2/τ , 3/τ , etc. will have near zero signal to
noise ratio, which is bad. (See Fig. 2). This issue is
not adequately discussed in traditional time domain
methods of analyzing the retarded equation Eq. 4, but
becomes immediately obvious when plotted in the
Fourier domain.

VISAR AS A FILTER

Our solution is to model the VISAR as a linear
filter producing signal S(t), and that the differ-
ence equation represents an impulse response
R(t) = δ (t)−δ (t − τ) consisting of a positive
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FIGURE 4. (Top graph) Reconstructed VISAR signal (thick black) from two long delay VISARs is similar to signal of a
conventional short delay of 3 points (thin red), using simulated data with random noise. The two long delays have delays of 31
points (short dashed gray) and 27 points (long dashed gray). The residuals from the perfect signal (inset) are plotted in bottom
graph.
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FIGURE 5. The FFT of residuals shows noise spectra,
comparing this technique to conventional (3 pnt delay).
Our technique produces much lower noise for absolute ve-
locities (period>40 points), yet comparable noise averaged
over mid to high frequencies. Choice of delays affects this.

and a delayed negative spike. So the data sig-
nal S(t) = X(t)⊗R(t) is the target position X(t)
convolved with the instrument impulse response.

It is conceptually useful to model detector blur-
ring as a convolution of fringe phase with an impulse
response D(t), having frequency response d( f ), so
that S(t) = X(t)⊗R(t)⊗D(t), even though in real-

ity it is a convolution of the complex fringe as in
W (t) = γ(t)ei2πφ(t)⊗D(t). We find this (small sig-
nal) approximation works well everywhere except at
any discontinuous jumps in velocity.

In Fourier space convolutions become multiplica-
tions. Let the lower case designate the Fourier trans-
form, so s( f ) = FFT S(t) etc. Then the unblurred
instrument response is r( f ) = 1− e−i2πτ f , and with
detector blurring

r( f ) = (1− e−i2πτ f ) d( f ), (5)

and the VISAR output in frequency space is

s( f ) = x( f )r( f ). (6)

Figure 2 shows r( f ) for the unblurred (top) and
blurred (bottom) cases. The periodic zeros (interval
1/τ) in the magnitude of r( f ) are the prominent fea-
ture. They manifest the inability of a single VISAR
to measure a signal that is exactly periodic with the
delay τ . Note that a slow detector would have a very
narrow frequency response that would make this is-
sue moot, because r( f ) would only be significant for
the lowest f before the first zero. The lowest f is
where the derivative behavior occurs (where r( f ) is
linear with f ).



Inverse Solution

It is tempting to directly solve for the target motion
via a division

x( f ) = s( f )/r( f ) (7)

but the zeros in r( f ) obtained from a single VISAR
thwarts this by creating infinities, since measurement
noise inside s( f ) prevents the numerator from de-
creasing simultaneous with the denominator r( f ).

Combining Two Signals

Our solution is to get rid of the zeros by using a
second VISAR measuring the same target but having
a slightly different τ , and hence having different zero
positions. (Conveniently, it is standard practice to use
two VISARs, to resolve integer fringe skips.) The
goal is to make it rare that two zeros are at the exact
same frequency f , for the range of f most important
for the science. Thus we prefer an irrational number
for the two delay values. There is a variety of choice,
and we explore here a ratio 31/27= 1.148.

Then we effectively combine the larger of each
signal at each f to form a composite signal x12( f )

x12( f )=
w1( f )s1( f )/r1( f )+w2( f )s2( f )/r2( f )

w1( f )+w2( f )+ ε
g( f )

(8)
where w1 and w2 are weights which should go to zero
as r( f ) goes to zero, so that the noisier component
is discriminated against. We use w( f ) = |r( f )|2 in
the simulation, but power law exponents from 1 to
4 give about the same rms average noise to a few
percent. The epsilon is a very small number (10−6 )
to prevent the denominator from ever becoming zero
(which ruins the inverse Fourier transform) and may
be omitted.

To avoid high frequency noise where there is lit-
tle science signal we then an apply a Gaussian blur-
ring g( f ), which is an arbitrary apodization. We ef-
fectively use g( f ) = d2( f ) in the simulation (we ac-
tually omit d( f ) from r( f ) in Eq. 5). Then we inverse
Fourier transform it to produce X12(t).

The result is then differentiated to convert it from
a displacement to a velocity. VISAR phase data is
often step-like, and to avoid ringing artifacts in the
FFTs the data can be temporarily symmetrized by

reflection about the time axis so that the boundaries
match.

Noise Frequency Distribution

The results for simulated data on two VISARS of
delay 27 and 31 points, a detector Gaussian blur of
3 points, added random noise, and an apodization
Gaussian blur of 3 points are shown in Fig. 4, com-
pared to a classical VISAR having a short delay of
3 points with the same added noise (of both detec-
tors averaged to make it fair). The Fourier spectrum
of the residuals (Fig. 5) shows that the absolute ve-
locity determination ( f <0.025, or features having
periods greater than 40 points) is better than 4 times
less noisy than the short delay VISAR. (Choice of
delays affects this.) The rms mid to high frequency
( f =0.025 to 0.3) average noise is only 40% larger
than the conventional short delay (∼10% of long de-
lay), but obviously has different coloration.

In other words, by our technique one can get the
long timescale performance of a long delay without
sacrificing the short time scale performance of a
short delay. The delay choice can be adjusted to
optimize the noise coloration for the expected kind
of science signal.
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